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The possibility is investigated that competition between fluctuations at different symmetry-related ordering
wave vectors may affect the quantum phase transition between a fermi liquid and a longitudinal spin density
wave state, in particular, giving rise to an intermediate “nematic” state with broken rotational symmetry but
unbroken translational symmetry. At the marginal dimension the nematic transition is found to be preempted by
a first-order transition but a weak symmetry breaking field restores a second-order magnetic transition with an
intermediate regime in which correlations substantially enhance the broken rotational symmetry. Comparison
to recent experiments is made.
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“Stripe” spin density wave order occurs in many high-Tc
cuprate materials.1–3 A spin density wave is a longitudinal
modulation of the spin density S��R� characterized by a wave
vector Q giving the periodicity of the spin modulation. In a
“stripe,” 2Q is not a reciprocal lattice vector so the magni-
tude of the spin, as well as its direction, varies from lattice
site to lattice site. If the underlying lattice has sufficient sym-
metry, stripe ordering may occur at one of several inequiva-
lent wave vectors Qa. In the hole-doped high-Tc cuprates the
important physics is two dimensional and the lattice has �to a
good approximation� square symmetry. For dopings greater
than about x=0.05 and less than a material-dependent num-
ber ranging from 0.08 �in YBa2Cu3O6+x �Ref. 4�� �YBCO� to
0.24 �in La1.6−xNd.4SrxCuO4 �Refs. 5–7�� order is believed to
occur at one of the two wave vectors Qx= ��−� ,�� or Qy
= �� ,�−�� with � doping dependent and generically
nonzero.1,2,4,7–9

In a stripe state the expectation value of the spin density
at position R, S��R�, may be written as

�S��R�� = A� a cos�Qa · R + �a� . �1�

The state defined by Eq. �1� breaks spin rotation, lattice
translation and lattice rotation symmetries. A phase charac-
terized by a nonvanishing �S��R�� is also characterized by
nonvanishing

�T�R�� � �S��R� · S��R�� − ��S��R� · S��R���

� cos�2Qa · R + 2�a� �2�

where the double-bracket indicates also an average over po-
sition. T is spin rotation invariant but breaks lattice transla-
tion and rotation symmetry if 2Q is not a reciprocal lattice
vector. �One may also consider bond order involving
�S��R� ·S��R��R�� but this will not be important here�. T
couples linearly to lattice distortions and the electronic
charge density, so is observable in scattering
measurements1,8,10 and is sometimes referred to as “charge
order.”

The “stripe” state is also characterized by nonvanishing

���R�� = ��S�Qx
�R� · S�Qx

�R� − S�Qy
�R� · S�Qy

�R��� �3�

where SQa
indicates spin fluctuations with wave vectors near

Qa. ��� is invariant under spin rotations and lattice transla-
tions but breaks the discrete lattice rotation symmetry and
may be referred to as a nematic order parameter.8,10

The three broken symmetries may be restored at separate
transitions.8,10 �Very similar phenomena are well understood
in the classical physics context of smetic and nematic liquid
crystals.11� If spin order is destroyed by fluctuations in the
direction of A� �as would happen in a two dimensional model
with Heisenberg symmetry at any T�0�, �T� and ��� may be
expected to remain nonzero. If long-ranged order in T is
destroyed by fluctuations in �, ��� may remain nonvanishing.
In physical terms, the state with �S��= �T�=0 but ����0 has
the property that fluctuations around one of the Qa are larger
than fluctuations around the other possible Qb�a.

Experimental evidence suggests that this sequence of
transitions indeed occurs in some high Tc compounds. Many
measurements1,8 indicate that in underdoped cuprates the
ground state �if superconductivity is suppressed� is charac-
terized by magnetic scattering at the wave vectors Qx,y and
2Qx,y but not at Qx�Qy, implying that the scattering signal
arises from a superposition of domains with order at either
Qx or Qy. As temperature is raised above an ordered state the
Bragg scattering at Q vanishes first, leaving an intermediate
state with Bragg scattering only at 2Qx and 2Qy.

1 Recent
neutron scattering measurements4 on a monodomain sample
of YBa2Cu3O6.45 indicate a wide temperature regime where
there is order neither at Qx,y nor at 2Qx,y but where the fluc-
tuations associated with ordering wave vector Qx have much
longer spatial range and stronger temperature dependence
than the fluctuations associated with potential ordering wave
vector Qy. Transport measurements have detected rotational
symmetry breaking2 and, recently, an enhancement of the
Nernst effect in this temperature regime has been
reported,9,12 also consistent13 with an intermediate nematic
phase. Similar transport behavior in the �La /Nd�2−xSrxCuO4
family of materials has also been interpreted in terms of a
nematic phase or regime.6 It is however important to note
that the crystal structure of both of these materials is such
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that a CuO2 plane is orthorhombically distorted so it may be
more appropriate to describe the observed “nematic” regime
as being characterized by a strong and strongly doping and
temperature-dependent enhancement of a preexisting aniso-
tropy.

Closely related issues have been discussed in the context
of the pnictide materials14,15 where 2Q is a reciprocal lattice
vector16 so only the spin and nematic orders are relevant.
Also in pnictides a strong coupling to lattice distortions be-
lieved to be important.

These and related experiments have focused theoretical
attention on “nematicity.” A number of works consider nem-
atic phases which are taken to be conceptually independent
of any density wave ordering.13,17–24 This paper considers the
density wave instability as primary with the nematic phase
arising from it. The physical idea is straightforward: in a
stripe situation, density wave ordering at one possible order-
ing wave vector Qa must act to suppress density wave order-
ing at the other possible wave vectors Qb�a. Thus, as a pu-
tative “stripe” quantum critical point is approached
competition between fluctuations at different wave vectors
may drive a “nematic” transition at which the system
chooses one wave vector at which the fluctuations will be-
come critical, while fluctuations at the other wave vectors
remain massive. Alternative possibilities are that the compe-
tition is important only for selecting the relevant state inside
the density wave ordered phase, or that competition between
fluctuations may drive the transition first order. In renormal-
ization group language the question is whether there is a
relevant operator at the stripe critical point and, if so, does it
imply a flow to a new “nematic” critical point or a runaway
flow indicating a first-order transition.

This paper approaches the physics in terms of a T=0 in-
stability of a disordered fermi-liquid phase using the stan-
dard “Hertz” model of a density wave transition in a two-
dimensional fermi liquid.25,26 The main finding is the phase
diagram depicted in Fig. 1: for lattices with square symmetry
the quantum “nematic” transition is typically preempted by a
strongly first-order transition directly to a density wave state;
however, a weak explicit symmetry breaking restores a con-
tinuous transition.

Incommensurate density wave transitions are the subject
of an extensive literature,27,28 but the issue of interest here
has been less studied. Physics similar to that of interest here
has been explored in the context of classical spin models for
cuprates29 and pnictides.14 Also, although their main focus
was on transitions between nematic and density wave or-
dered states, Sun and co-workers observed22 that the basic
fermi liquid to density wave transition would likely be first
order. DePrato et al.30 used renormalization group techniques
to classify the quantum critical fixed points of a model of
“stripe” quantum criticality involving undamped spin excita-
tions in two spatial dimensions, in particular identifying and
analyzing regimes of stable second-order transitions. At
these transitions there would be no intermediate nematic
phase separating the density wave and disordered state.

Pelissetto et al.31 studied a spin density wave transition
occurring inside a d-wave superconducting state. The most
relevant perturbation involved coupling of nodal fermions to
a nematic order parameter derived from the spin fluctuations

in a manner very similar to what is considered here; however
again the density wave transition was not preempted by a
nematic one. Qi and Xu15 studied a spin-fermion model,
finding a runaway flow also indicating first-order transitions,
but only at an exponentially long length scale.24

A theory of the disordered spin density wave may be
obtained from Eq. �1� by regarding A� and � as slowly fluc-
tuating quantities. We specialize to the two dimensional
square �or rectangular� lattice. Because we are interested in
the transition from a fermi liquid where all spin amplitudes
are small we combine Aa and �a into a new complex field
�� a�r�=A� a�r�ei�a�r� which we assume is described by the ac-
tion S=Sdyn+Sstatic with

Sstatic =	 d2rd	 

a=x,y

�1

2
���� a�2 +

1

2
�a��� a

2�

+	 d2rd	

u + v
8

���� x
� · �� x� + ��� y

� · �� y��2

+
u − v

8
���� x

� · �� x� − ��� y
� · �� y��2 �4�

The �a are control parameters �for example, doping� which
tune the system through the magnetic quantum critical point
and we have allowed for the possibility that deviations from
tetragonal symmetry favor ordering in one direction rather
than another. Because the experimental evidence in high-Tc
materials indicates that spin fluctuations are strongly peaked
near discrete momentum values we do not need to consider
the possibility of a continuous rotation of the wave vector

S

δ

Stripe

Disordered

FIG. 1. �Color online� Zero temperature phase diagram of two
dimensional stripe ordering model in plane of doping � and tetrag-
onal symmetry breaking parameter S. Solid lines: phase transition
between paramagnetic metal �“disordered”� and density wave
�“stripe”� state. Star �light blue online�: tricritical point separating
first-order �heavy line� and second-order �light line� phase transi-
tions. Dashed line �black online�; putative second-order density
wave transition preempted by first-order transition. Small filled
circles �red online�: paramagnetic nematic phase, defined only at
S=0 and separated from density wave and disordered phases by
second-order phase transition points marked, respectively, by large
circle �green online� and square �purple online�. Nematic phase and
associated transitions are also preempted by first-order transition

A. J. MILLIS PHYSICAL REVIEW B 81, 035117 �2010�

035117-2



and any potential nematic phase would have a strong Ising
anisotropy.

Of the six possible quartic nonlinearities �see Ref. 30 for
a complete list� Eq. �4� includes only the two which are
important for the present purpose, neglecting terms which
favor spiral and other nonstripe states or renormalize the ba-
sic stiffness against large amplitudes of the fields. The cru-
cial term is the third one, which quantifies the extent to
which orders in the x and y directions compete with each
other. The relevant case is v�u, so that fluctuations com-
pete. On the mean field level stability of this theory requires
that u�0 and v�−u.

We assume standard overdamped dynamics. For ease of
writing we present Sdyn in frequency space,

Sdyn =
1

2 

a=x,y

T

n
	 d2r

�
n�
�

��� a · �� a� . �5�

The theory requires an ultraviolet cutoff. We measure energy
in units of � and impose a hard cutoff, eliminating all pro-
cesses for which �
� /�+k2��. Qi and Xu15 studied essen-
tially this model, but with an additional ��� 1 ·�� 2�2 coupling.

As defined the upper critical dimension of the model is
d=2 and the physics may be studied by a renormalization-
group analysis. The required beta functions are given in Eq.
�3.1� of Ref. 30. It is useful define new variables g and 
 by
u=g cos 
, v=g sin 
 which flow according to �here the dot
denotes changes with renormalization group cutoff param-
eter�

ġ = − �7 cos3 
 + 11 cos 
 sin2 
 + 2 sin3 
�g2, �6�


̇ = �3 sin3 
 − 2 sin2 
 cos 
 − sin 
 cos2 
�g . �7�

Because ġ�g2 while 
̇�g, 
 flows much more rapidly than
g and the content of the theory may be understood from a
constant g. In Eq. �7� the angle 
 /4 �corresponding to u=v�
is a separatrix. For 
�� /4 the flow is toward 
=0, but in
the 
�� /4 case relevant to stripe physics the flow is toward
a fixed point value which is close to �. Noting that u turns
negative at 
=� /2 we see that the renormalization group
analysis indicates that when the flow passes this point the
two dimensional stripe fixed point becomes unstable toward
a first-order transition. The basic conclusion is perhaps not
surprising: the model of two coupled order parameter fields
is a textbook example of a runaway flow leading to a first-
order transition.32,33 De Prato et al.30 observed that their
more general renormalization group equations had only un-
stable fixed points near the marginal dimension and Sun et
al. noted that multicritical points of this type tend to be un-
approachable due to the presence of runaway flows.

Qi and Xu15 similarly noted the possibility of a runaway
flow. The equations of Ref. 15 involve three couplings and
are thus more complicated to solve. A numerical solution
was presented which indicated a runaway flow, albeit begin-
ning at an exponentially low scale, whereas what is found
here is a first-order transition at a scale which is not, in
general, exponentially small.

The first-order nature of the transition arises from compe-
tition between fluctuations associated with the two ordering

wave vectors. An explicit symmetry breaking term �arising,
e.g., from the chains in YBCO� would grow under renormal-
ization and if it became large enough, would quench the
fluctuations at one of the two wave vectors, thereby permit-
ting a continuous behavior. To understand the energy scales
involved in this scenario we consider a self-consistent one-
loop analysis, which while less rigorous than a renormaliza-
tion group treatment has a transparent physical interpretation
and allows for straightforward estimations of energy scales.

To implement the self consistent one loop theory we write
the model as a functional integral and decouple the nonlin-
earities ��x�2+ ��y�2 and ��x�2− ��y�2 by Hubbard-Stratonovich
fields i� and � respectively and then integrate over the �
fields obtaining the action

S��,�� =
�2

2�v + u�
+

�2

2�v − u�
+

3

2
Tr ln��0 + �x + i� + ��

+
3

2
Tr ln��0 + �y + i� − �� �8�

with �0= �
�+k2. Equation �8� is written for the paramag-
netic phase; the factor of 3 is the spin degeneracy. Mean field
theory corresponds to finding the �� and �� which extremize

S. The extremal values of � are imaginary; we write i�= �̄

−r with �̄= ��x+�y� /2 and introduce �= ��x−�y� /2 which
parametrizes any explicit breaking of tetragonal symmetry.
The correlation length �x,y for spin fluctuations around the
wave vectors Qx,y is �x,y

−2 =r� ��+��. In the paramagnetic
phase �a

−2�0. If one of the fields, say �y, orders, then the
Heisenberg symmetry ensures that the two transverse com-
ponents are gapless ���,y

−2 =0� while the longitudinal compo-
nent has a correlation length determined by the magnetiza-
tion m, ���,y

−2 =m2� so that the term 3
2Tr ln��0+�y + i�−��

→Tr ln��0�+ 1
2Tr ln��0+m2�.

Fang et al.14 presented a large-N analysis of a classical
spin model which leads to a theory very similar to that de-

fined by Eq. �8� if �̄ is chosen to be deep in the ordered phase
so quantum fluctuations are unimportant.

Defining �crit to be the value at which S is extremized at
�=rx=ry =0, redefining �x,y as the difference from �crit, in-
troducing ū�v̄�=3u�v� /4�2 and explicitly carrying out the
minimization in the paramagnetic phase at T=0 we obtain

�x = rx�1 + ū ln
1

rx

 + v̄ry ln

1

ry
, �9�

�y = ry�1 + ū ln
1

ry

 + v̄rx ln

1

rx
. �10�

In the tetragonal symmetry case �=0 and at �̄�0 Eqs. �9�
and �10� admit an isotropic solution rx=ry �0 corresponding
to the conventional paramagnetic phase. However, for v�u
one finds that as � is decreased below a critical value �nem
�0 the isotropic solution undergoes a bifurcation to a solu-
tion with rx�ry. �Fang et al.14 found a very similar transi-
tion, in their case thermally driven.� This is a nematic phase:
the nematic order parameter is �����x�2�− ���y�2�. Writing
rx=r+� /2, ry =r−� /2, and linearizing in � we find
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�nem =
2v̄ + v̄2 − ū2

v̄ − ū
e−1−1/�v̄−ū� �11�

However, within mean field theory this critical point is typi-
cally preempted by a first-order transition to a state with
long-ranged stripe order. The first-order transition manifests
itself as a failure of numerical routines to find a solution to
Eqs. �9� and �10� as � is decreased below a spinodal value
greater than �nem and may also be seen more directly.

We have computed the energy of a magnetized state by
generalizing Eq. �8� as described above. We find that at �
=�nem an ordered state with r= �� and m�0 exists and has
lower energy than the paramagnetic state, provided that v̄ is
not too large. Thus at some ���nem the system will jump
from the isotropic paramagnetic phase to a phase with long-
ranged order. The largest � at which an ordered phase may be
sustained may be ascertained from the � at which there is a
solution to Eqs. �9� and �10� with ry =0 and rx�0. This �
=�1st−order is

�1st−order =
v̄e−1/�v̄−ū�

v̄ − ū
=

e

2 + v̄ − ū2

v̄

�nem. �12�

By comparison of energies we find that if �1st−order��nem the
nematic transition is preempted by a first-order transition. As
the second equality of Eq. �12� shows, for v̄�vc�u� with
vc�u=0�=e−2�0.718…, �nem��order so that a second-
order transition can exist at large v. However, in the large v̄
regime in which the transition �within the present theory� is
second order, substitution into the defining equations shows
that the renormalized mass r is of the order of the cutoff,
indicating that the second-order transition occurs in a regime
beyond the range of validity of the critical theory. We inter-
pret this result as meaning that the nematicity arising in the
large v case is an intrinsic phenomenon arising from short
length scale physics and not directly related to the singular
magnetic critical fluctuations.

We are now in a position to consider the effects of an
explicit breaking of the C4 lattice rotational symmetry, such
as occurs in YBa2Cu3O6+x and La1.6−xNd0.4SrxCuO4. The ef-
fect of an explicit breaking of the C4 symmetry on the nem-
atic order is analogous to the effect of a magnetic field on
ferromagnetic order: it converts a �hypothetical� second-
order transition into a smooth crossover. More importantly,
breaking C4 symmetry means a relative suppression of fluc-
tuations near one of the two possible ordering wave vectors
and relative enhancement of fluctuations near the other. Be-
cause the first-order transition was induced by competition of
fluctuations, this will tend to convert the first-order transition
to a continuous one The small value of ��1st−order

−�nem� /�nem suggests that the symmetry breaking field
needed to change the order of the transition will not be large.
Figure 2 presents results obtained by solving Eqs. �9� and
�10� for �x=�y +� for a representative choice of parameters
ū=0.3 and v̄=0.6 �implying �1storder=0.071 and �nem

=0.0328�. and several levels of anisotropy. One sees that for
these parameters anisotropy greater than about 0.01
���1storder−�nem� /4 restores a continuous behavior.

Extending the results to temperatures T�0 is complicated
by issues including the difficulty of treating the classical
transitions below their upper critical dimension, the interplay
between “nematic” and 2Q �“charge”� order and the possible
first-order nature of the transitions. A detailed discussion will
be given elsewhere but a few remarks are in order here.

One should distinguish two situations: either the model
has an intrinsic tendency toward nematic behavior, not di-
rectly related to the stripe criticality �in the model defined by
Eq. �4� this would occur if v is large, both absolutely and
relative to u� or the first-order transition preempts the T=0
nematic phase. Models with “intrinsic” nematicity have been
extensively discussed elsewhere13,17–23 and will not be con-
sidered here. In the case where the T=0 nematic phase is
preempted by a first-order transition there remains the possi-
bility of nematic behavior at T�0.

Indeed the model defined in Eq. �4� trivially exhibits nem-
atic behavior if parameters are chosen so that the model is in
the magnetically ordered state at temperature T=0 and if
charge order is not important �for example because 2Q is a
reciprocal lattice vector�. The ordered state must select one
of the two wave vectors, say Qx. The Heisenberg symmetry
and two dimensionality then implies that if temperature is
slightly raised above the ordered state, fluctuations near Qx
have a correlation length of the “renormalized classical”
form ��exp��s /T� while fluctuations near Qy have a rela-
tively short and weakly temperature dependent correlation
length, so the resulting state is a “nematic.” The question
then is whether this “thermal spin nematic” behavior van-
ishes via a first or a second-order transition. If a weak inter-
layer coupling is added to the model one may ask if the
nematic behavior survives at temperatures higher than the
three dimensional ordering temperature �this issue was ad-
dressed in the classical model of Ref. 14�. If charge order is
also important, one may ask if the nematic behavior vanishes
at the charge ordering temperature or at a higher temperature,
and what are the orders of the transitions.

Clearly a transition which is first order at T=0 remains

0.08 0.1 0.12 0.14 0.16 0.18

δ
x

0
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ξ−2

.001

.004

.008

.012

FIG. 2. �Color online� Dependence on control parameter � of
inverse correlation length parameters for x �solid line� and y
�dashed line� wave vectors for different levels of explicit symmetry
breaking �x=�y +� with anisotropy parameters � as indicated and
interactions ū=0.3 and v̄=0.6.
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first order as the phase boundary is extended to T�0, at least
within some distance of the zero temperature transition, so
an extension of the present results to T�0 would suggest a
first-order thermal transition, at least for dopings near where
the T=0 ordered state vanishes, but it is not ruled out that the
transition may become second order as doping is reduced
deeper into the ordered phase.

The self-consistent one-loop approximation employed
above leads to a reentrant behavior. As T is increased from
zero the first-order transition line extends to the larger � side
of the critical point and the transition is from an isotropic
paramagnetic phase at low T to a higher T “nematic renor-
malized classical” phase in which the spin fluctuations near
one of the two ordering wave vectors have a very long and
rapidly temperature-dependent correlation length while those
near the other have a correlation length which is relatively
short and weakly temperature dependent. Whether the “nem-
atic renormalized classical” phase is also characterized by
long-ranged 2Q charge order depends on details. As the tem-
perature is further increased the charge order �if any� disap-
pears and there is a second transition �typically also first-
order within this approximation� to a fully isotropic phase.
The first-order transition persists as parameters are tuned to
move deeper into the insulating phase. While the reentrant
behavior seems unphysical, and is likely to be an artifact of
the approximation, the qualitative result of a range of zero
temperature parameters above which the thermal transition is
first order is robust.

The classical-spin results of Ref. 14 provide an interesting
perspective on this issue. As remarked above, this model is
in essence the self-consistent one-loop approximation to the
classical limit of the model defined in Eq. �8� for � deep
within the T=0 ordered phase and 2Q a reciprocal lattice
vector. The authors of Ref. 14 considered a regime in which
the physics was controlled by the “renormalized classical”
divergence of the correlation length and moreover chose pa-
rameters corresponding to an extremely weak tendency to-
ward nematic ordering. Reference 14 defines a dimensionless

quantity K̃ / J̃2, which is essentially �v−u� / �v+u� in the no-
tation of this paper. This was taken to have the very small
value 7.5�10−3. For this parameter value Ref. 14 reported a
second-order “nematic” transition which occurred at very
low temperatures deep in the “renormalized classical” re-
gime and was not preempted by a first-order transition. Ref-

erence 14 did not report results for larger K̃, but solving their

equations indicates that as K̃ is increased to a value

�0.075J̃2 the thermally driven transition again becomes first

order. Now 4�J̃2 is essentially the spin stiffness of the mag-
netically ordered state which may be thought to grow with

distance into the ordered phase so if one imagines that K̃
��v−u� is fixed to a value which is not too large, the in-
crease in the magnetic spin stiffness distance into the ordered
phase may eventually drive the model into the second-order
transition regime.

Of course, the reliability of the self-consistent one-loop
approximation may be questioned, especially for thermal
phenomena. The analysis of Ref. 26 indicates that this analy-
sis is essentially equivalent to a renormalization group analy-

sis for models above the upper critical dimension, but for
models which are below the upper critical dimension this is
of course not the case. The self-consistent one loop approxi-
mation has the exponents of the Gaussian model, and for this
reason may overestimate the tendency toward nematic order.
For example, one may define a “nematic susceptibility” via
the correlation function ���x

2−�y
2�2�. This correlator is closely

related to the energy correlator that defines the specific heat
exponent. The Gaussian model dramatically overestimates
the divergence of the specific heat near two-dimensional and
three-dimensional classical transitions and may well simi-
larly overestimate the divergence of the “nematic suscepti-
bility.”

Despite these difficulties it is interesting to relate the pic-
ture presented here to data. The essential point is that in
models in which “nematicity” is derived from competition
between density wave ordering at several wave vectors, the
nematic phase may be preempted by a first-order transition,
but if the lattice rotational symmetry is explicitly broken a
more continuous behavior may be restored. There is no direct
evidence that stripe order terminates at a first-order quantum
critical point in any cuprate, although we note that phase
coexistence, a typical consequence of first-order phase
boundaries, is common in cuprate materials. The strongest
evidence in favor of a nematic regime comes from the
YBCO and �La /Nd�2−xSrxCuO4 families of materials4,9,12

where the lattice symmetry is explicitly broken. It is very
tempting to argue that the symmetry breaking pushes the
system into the continuous transition regime identified
above. It may also be worthwhile to reexamine the data to
determine if a local lattice distortion �favoring one or the
other wave vector� is present or if a hysteresis has been over-
looked.

In summary, this paper has posed the question of the ex-
istence of an intermediate nematic phase separating a stripe
and a fermi liquid phase in terms of fluctuation corrections to
a putative “stripe” quantum critical point. The physics that
can lead to a nematic phase also leads naturally to a
fluctuation-driven first-order transition, which near the quan-
tum critical point was found to preempt the nematic phase.
The first-order transition is not inevitable. If parameters were
tuned so that the nematic transition occurs “far” from the
putative stripe quantum critical point so that the “nematicity”
is an intrinsic effect and not driven by critical density wave
fluctuations, then the considerations of this paper are not
relevant.

It was found that the first-order transition could be con-
verted to second order by a quite small anisotropy. The
analysis relied on approximations including the self-
consistent one-loop theory �which is uncontrolled� and the
Hertz quantum critical theory �which is subject to corrections
whose nature remains incompletely understood27� but the
first-order behavior discussed here follows from relatively
general considerations and seems likely to be robust. In sys-
tems where nematic behavior was found a reexamination of
experimental data for signatures of first-order transitions �for
example, hysteresis and phase coexistence� may be worth-
while. Extension of the results presented here to T�0, to
include coupling to the lattice, and to other situations, such
as the metamagnetic transition in Sr3Ru2O7, would be of
interest.
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